Tetravalent Non-Normal Cayley Graphs of Order 4p
نویسنده
چکیده
A Cayley graph Cay(G,S) on a group G is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay(G,S). In this paper, all connected tetravalent non-normal Cayley graphs of order 4p are constructed explicitly for each prime p. As a result, there are fifteen sporadic and eleven infinite families of tetravalent non-normal Cayley graphs of order 4p.
منابع مشابه
Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number
In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.
متن کاملHexavalent half-arc-transitive graphs of order 4p
A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set and edge set, but not arc set. It was shown by [Y.-Q. Feng, K.S. Wang, C.X. Zhou, Tetravalent halftransitive graphs of order 4p, European J. Combin. 28 (2007) 726–733] that all tetravalent half-arc-transitive graphs of order 4p for a prime p are non-Cayley and such graphs exist if andonly if p−1 is divi...
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کاملTetravalent half-arc-transitive graphs of order p4
A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let p and q be primes. It is known that no tetravalent half-arc-transitive graphs of order 2p2 exist and a tetravalent half-arctransitive graph of order 4p must be non-Cayley; such a non-Cayley graph exists if and only if p − 1 is divisible by 8 and it is unique for a given o...
متن کاملNORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009